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Abstract

An analytical solution is derived for the problem of a nonuniformly coated circular inclusion in an unbounded
matrix under anti-plane deformations. The inclusion/interphase/matrix system is subject to (1) remote uniform shear
and uniform eigenstrain imposed on the circular inclusion, and (2) a screw dislocation or a point force in the matrix. It
is found that the varying interphase thickness will exert a significant influence on the nonuniform stress field within the
circular inclusion, and on the direction and magnitude of the image force acting on a screw dislocation. In the course of
development, it is found that the presence of certain coated inclusions, which are termed szealth, will not cause change
of elastic energy in the body. The derived analytical solution for a screw dislocation is then employed as Green’s
function to investigate a radial matrix crack interacting with the nonuniformly coated inclusion. The numerical results
show that the varying interphase thickness will also affect the stress intensity factors.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interphases between the fiber and the surrounding matrix have become a focused research topic in
recent years due to the fact that the interphases, although usually small in thickness, can affect the overall
mechanical properties of the fiber-reinforced composites, and play an important role in controlling the
failure mechanism and fracture toughness of composite materials. Up to now, two different kinds of models
have been proposed and developed to simulate the interphase layer. One widely used model (see, for ex-
ample Achenbach and Zhu, 1990; Zhong and Meguid, 1997; Ru and Schiavone, 1997; Shen et al., 2000,
2001a,b; Liu et al., 2001) is based on the assumption that tractions are continuous but displacements are
discontinuous across the interface. More precisely, jumps in the displacement components are assumed to
be proportional, in terms of the ‘spring-factor-type’ interface parameters, to their respective interface
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traction components. As pointed out by Liu et al. (2000), the main drawbacks of this spring-like model lie
in that it cannot provide other important information about the property of the composite, such as the
effect of changes of thickness and nonuniform distribution of the interphases. The other model (see, for
example Honein et al., 1994; Ru et al., 1999; Liu et al., 2000; Xiao and Chen, 2000, 2001a,b; Shodja and
Sarvestani, 2001), which is based on strict elasticity theory and which will be employed in this study, as-
sumes the interphase as a distinct layer between the fiber (inclusion) and the matrix, of specified thickness
and of elastic constants different from those of the matrix and the fiber.

The main objectives of the present paper are (1) to investigate the influence of varying interphase
thickness on the stress fields induced within and near the fiber (inclusion); (2) to probe the influence of
varying interphase thickness on the mobility of a dislocation in the matrix; and (3) to study the influence of
varying interphase thickness on matrix cracking. By applying complex variable techniques, an exact elastic
solution in series form is derived for the interaction problem between a nonuniformly coated inclusion and
a screw dislocation or a point force. The derived analytical solution for a screw dislocation is then utilized
as Green’s function to investigate matrix cracking in the inclusion/interphase/matrix system. The numerical
results show clearly how the nonuniform stress field, average stresses and peak stresses within the circular
inclusion, change of elastic energy due to the introduction of the coated inclusion, and stress concentration
vary with the nonuniformity of the interphase thickness when the composite system is only subject to re-
mote uniform shearing and uniform eigenstrain imposed on the circular inclusion. The numerical results
also convincingly demonstrate that varying interphase thickness can significantly affect the direction and
magnitude of the image force acting on a screw dislocation in the matrix, and can influence the stress
intensity factors (SIF) for a matrix crack.

2. Basic equations

As shown in Fig. 1, we consider a circular inclusion S; surrounded by an interphase layer S, of non-
uniform thickness, which in turn is embedded in an unbounded matrix S;. The shear moduli of S}, S, and S
are respectively u,, 1, and ;. Both the outer circular interface I'y formed by S; and S,, and the inner
circular interface I'; formed by S; and S, are assumed to be perfect, i.e., both tractions and displacements
are continuous across the two interfaces. The origin of the Cartesian coordinate system is chosen to be at
the center of the outer circle I'y of unit radius. The center of the inner circle I', of radius Ry = (x, — x;)/2

BN
Matrix S; screw dislocation
or point force
er S °;
on S}
0 x

Fig. 1. A screw dislocation or a point force near a circular inclusion with a nonuniform interphase layer (z-plane).
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lies on the x-axis. The two centers of the two circles I'; and I', are set apart by the distance 4 = (x; +x,)/2.
The composite system is subject to remote uniform anti-plane shearing {¢, 03} and uniform anti-plane
eigenstrains {¢, ¢, } imposed on the circular inclusion ;. In addition, a line force f or a screw dislocation
with Burgers vector b is located at the point Z = % + iy in the matrix. The nonvanishing stress components
are g, and ¢, and the only displacement component is the out-of-plane component .. For this anti-plane
deformation state, the out-of-plane displacement u, and stress components can be expressed in terms of a

complex function f(z) (z = x +iy) as follows (Muskhelishvili, 1953; Gong and Meguid, 1992)

u: = Im{f(z)}

0.y +i0., = puf'(2) (1)

The complex potentials defined in the regions S, S, and S; will be denoted by f(z), f>(z) and f3(z).

3. Conformal mapping

We adopt the following conformal mapping function m({) (Cao, 1988)

(—a

2= m(l) = =4 .

where

. 1 +xx 4+ /(3 —1)(x3 —

X1 +X2

3)

The mapped {-plane is shown in Fig. 2. It can be observed that the unbounded matrix S; is mapped onto a
unit disk |{| < 1 in the {-plane and the point at infinity z = oo is mapped onto { = 1/a in the {-plane, the
interphase layer S, formed by two eccentric circles I'j and I'; is mapped onto the annulus 1 < |{| <R
(R=(1—-xx2++/(x} —1)(x3 —1))/(x2 — x1) > 1) in the {-plane, and the circular inclusion S; is mapped
onto |{| > R in the {-plane. It’s easier to solve the boundary value problem in the {-plane than in the
original z-plane.

AN
N

Fig. 2. The problem in the {-plane.
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4. Exact solution
4.1. Field potentials

It shall be mentioned here that for convenience, we write

fi@) = fi(m(0)) = /() (1=1,2,3)

The continuity condition of displacement across the interface |¢| = 1 can be expressed as

[fi(o) + 1>(1/)]" = [f1(1/0) + fa(o)] (lo| =1) (4)

where the superscripts “+” and “—" denote the limit values from the inner and outer sides of the contour
being considered.
In view of the above expression, we introduce a function 4,({) defined by

HO+0/0 1/R< | <1
4l) = {fl(l/C)Jrfz() 1<[t|<R (5)

By the generalized Liouville’s theorem, we can obtain

K a*K (¢ 1/c
where
Cat—1, _l;fi,ul’lfA ; Z-—a
= (03 +io2), a=—— " (=5 ™
The continuity condition of traction across the interface |¢| = 1 can be expressed as
mlfi () + 7, (1/0)] = wlfy () + 75 (1/0)] (o] = 1) (8)
Inserting Eq. (6) into Eq. (8) and eliminating £, (o), f;r(l /o) will yield
@)+ 11 (/o) =ndi(e) (o] =1) ©)
where
21
_ 10
LT (19
In view of Eq. (9), we introduce an auxiliary function ;({) defined by
K —1)C = (—¢ K
o A+ —m)l—g_awln = —ngZIAnC —qlnC_ l/a_C— Ta (€< 1)
1(¢) = 5
. K (¢ l/c @K
_fl(l/c)_(l_nl)lm_FQIHﬁ +7’1le5 +q In" = = (1¢>1)
(11)

It follows from Egs. (9) and (11) that @Q,({) is analytic and single-valued in the whole complex (-plane
including the point at infinity. By Liouville’s theorem, we obtain

Q) =0 (12)
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then
(- f K
+ E A,0" +qgln + <1

l/C a’K
1/ (- {—a

Substituting Eq. (13), into Eq. (5) will lead to the following expression for f>({)

L =2-m) [ﬁ‘*‘ qln%

The continuity condition of displacement across the interface |t| = R can be expressed as

A =00=n) [;_—Ka—qln { 12

71(1/4'):(1—171)[—{]{1/61— =

+7]1 ZA,,C + ln

+00
S A )AL (<1l <R)
n=1

1t
2(aR) @

- aRZ] = 7@ 4 Al + 25

—1/a

2(1) + /5(R? /1) —

| =n

where
o= (a? = 1)(&, +il,)
In view of the above expression, we introduce a function 4,({) defined by

(aR)

AO+T®-ZELE (<[l <R)
AZ(O = 26(6)1
[ (RO + f5(0) + T=1/a (R< (| <R
By the generalized Liouville’s theorem, we can obtain

+00

HQ) =D BL+BRC) (1<[(<R)

n=1

The continuity condition of traction across the interface |t| = R can be expressed as

wlfy (2) +F> (R /0] = wlfs (1) + 75 (R/7)] (jt] = R)
Inserting Eq. (17) into Eq. (19) and eliminating £5" (1), £, (R?/7) will yield

@) +75 (B f7) =, lﬁ‘z(f) e —wl/al (I =8)

where

2u,
o+ 1
In view of Eq. (20), we introduce a function ©,({) defined by

N =

Q) 1 [fﬁnm-" ey BRE
2(0) = -
T/ + | So L2 (g <)

(1€ >

1)

885

(14)

(17)

(22)
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It can be easily deduced from Egs. (20) and (22) that

(=0 (23)
then
+OO_ 2n y—n (JJ
SO = m| 3B —Cl/a] (18> R)
(24)
N +00 . RZ—
FAR )0 = %[;Bné + ’;"] (1 <B)
Substituting Eq. (24), into Eq. (17) will yield
N — B A BR 4 (2 (@)@ | R 25
AO =D (=B BRI ) g | (<[ <R 25)

In order to simultaneously satisfy the boundary conditions at I'; and I',, the compatibility condition for
/f2({) shall be satisfied. The compatibility condition for f>({) will lead to the following two compatibility
identities

RS ) D p2nly—n __ K C_é

;[(l_nl)An_BnR ]C _(”1_2)[C1/a+qlné'l/a]

Lo (aR)*®

; [, = (1 =ny)B,J0" = (2 - Wz)m (26)

Expanding all of the terms in the above expression and equating the coefficients of the same power of { will
lead to the following set of algebraic equations

(1= )y~ B = (1~ 2) [chﬂ

n

Ay = (1= m,)B, + (0, — 2)a(aR?) "
forn=1,2,...,4 (27)

Then all of the unknowns can be uniquely determined to be

(I=n)( 1— ) — R* {(1 = [Eal_n B q<cn _nan>

1 _ o —a
Kal”—q<c a )
n

(L =m)(1 =) =R {(m - +(2=m)(1 - m)a‘"Rz'@}

forn=1,2,..., 400 (28)

A, =

+(2- nz)al_"w}

B, =
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Now, all of the holomorphic functions have been fully obtained as follows

o K g_CA — n o yn
L) =2=-m)|+—7+qn— +Z[An§ + (1= n)A,L"]
{—1/a (-1 e (29)
< R
=Z[1—n2 )B. (" +B,RY + (2 - 'Iz)%] (1<l <R
. 5 %) 2n — w
A = [ B g_l/a] (I2 > R)
4.2. Stress field
e In the unbounded matrix S;
: 2
SN V1 [ Lt B
' i ' (9] a1
2? 7(1 - ClC n—1
X3 — 1) | =+ +n 4,( } (¢ < 1) (30)
{ S T lzn
e In the intermediate interphase layer S,
: (al—1)* K glal—1)
z x — 5 4 2 - - =
0z +10 M= X{( ’71)[ (C—l/a)2+(C—C)(aC—1)]
+ Z [nA,,C”fl +(n — l)nZ,,C”l}} (I<|l|<R) (31)
n=1
e In the circular inclusion S;
: . — 1) [ &2 _
0oy + 102 = —p3ny(el, +iel,) + Ma’?z(afz—_l) [Z( - n)BnRZ”C‘”‘I] (|¢] > R) (32)
n=1

It can be observed from (32) that when the system is only subject to remote uniform loading or uniform
eigenstrain, the stress field inside the circular inclusion is no longer uniform due to the nonuniform thickness
of the interphase layer. The average stresses inside the circular inclusion also give important information
regarding the overall understanding and behavior of the composite material. The average stresses within the
inner circular inclusion can be calculated to be

o . 2R2 I p——

oy +10 = —pany (), + i) — .“3’12 R(a Z”a "B, (33)

where the bar “—” denotes the average value.
Following the approach of Gong and Meguid (1992), the change of elastic energy AW in the body due to
the introduction of the coated circular inclusion can be evaluated for the case of uniform shearing ¢ and

o2 as
- +00 n(l — a2)2a72(n+1)

AW — M_l (azoyc)z + (o) ] [(1 —m) +m(=n)2—-n) z:l: (1 —n)(1 —n,) — R

(34)
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When pu, = ys, i.e., 1, = 1, then we have
1 —
aw =" [y 4 (o] (39)
I8
which coincides with the results of Gong and Meguid (1992).
Here we will term those coated inclusions, which satisfy AW = 0, stealth. This definition for stealth

inclusion can be considered as a natural extension for a uniformly coated inclusion (Honein et al., 1994). As
a result, the nonuniformly coated inclusion will be stealth when

+00 n(l _ a2)2a—2(n+1)
L—n)+nm(l—n)2—n =0
( 1) 1( 2)( 1); (1 _nl)(l_nZ)_RZn
When the interphase thickness is uniform, i.e., @ — +o0o0 and Ry = 1/R, then
1 —n :Ré(l — 1) (37)

The above condition is identical to that given by Honein et al. (1994).

(36)

4.3. Image force on the dislocation

Substituting the stress field acting on the screw dislocation (Eq. (30) subtracting the stress due to the
dislocation itself) into the Peach—Koehler formula (Wang and Lee, 1999), we can obtain the image force on
the screw dislocation. In the absence of external loading and uniform eigenstrain, i.e., K =0, w = 0, the
image force on the screw dislocation can be explicitly expressed as

. (af— 1) g(1 - af)
F—iF, = w2ng o= gy - 1) P
’ @ —1 (187 = D¢ -a)

+00 R R
+m Yy nd, I (<) (38)
n=1

5. A radial crack in the matrix

We now assume that a crack [%,%;] lies on the x-axis in the matrix as shown in Fig. 3, and we do not
consider the uniform eigenstrains imposed on the circular inclusion. Applying the analytical solution for a
screw dislocation which has been derived in the previous section, we finally obtain the following standard
singular integral equations for the unknown dislocation densities B(¢)

Fig. 3. A radial crack in the matrix interacting with the nonuniformly coated circular inclusion.
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t B(l) t 1_7]1 +00 tnén—l
/[lt_gvdt"‘/tl li_l/t_”ll(’ﬁ_z)(’?z_l);(1_171)(1_’72)_R2n13(t)dt

oy @-nf 1 a(i-m) S
= - + -2 -1
oo Lé—lmf A D ey e ey
(h <<<n) (39)
and the uniqueness condition
5]
/ B(t)dt=0 (40)
3|
where
= m()?l), th = m()%z) (41)

It shall be noticed that the above singular integral equations are formulated in the {-plane in stead of in the
original z-plane. Assuming square root singularities at both ends of the crack, the unknown dislocation
density may be expressed as

G(1)

—10) (6 — 0" (42)

B(t) =

Following the simple numerical method developed by Erdogan and Gupta (1972), the discretized forms of
Egs. (39) and (40) can be obtained. Consequently, we can obtain the numerical solution of the dislocation
density function G(¢) by solving the resulting linear algebraic equations. The stress component ¢, behaves
singularly at the two crack tips as follows

K(x)) K(%)

O =~ g Oy = = 43
. : 2(x — %) *3)

.~ G(t)|at — 1] 1
K%)= S@=1) vah (44a)

_ ,ulG(t2)|at2 — 1| 1

K(x 44b

) =B e (44b)
The SIFs are defined as (Erdogan et al., 1991)
k3()2'1) = ILm \/ 2(32'1 —x)azy(x, 0) = K(J%])

o (45)

k3()22) = lim vV Z(X —)Ez)Gzy(x, 0) = K(JEQ)

X*&fz

6. Numerical examples and discussions

In all of the numerical results presented below, if unspecified, it is assumed that the radius of the circular
inclusion S; is fixed to be 0.25, i.e., Ry = 0.25.
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6.1. The case of remote uniform shearing

In this subsection, we only consider the case in which the unbounded matrix is only subject to remote
uniform shearing o7 .

e Nonuniform stresses within the circular inclusion S

Figs. 4-7 illustrate the stress distribution in the circular inclusion along the circle I'; and along the x-axis
and y;-axis (see Fig. 1) when the center of the circular inclusion S; is varied with py:u,:p, = 10:1:5. It can be
observed from Figs. 4-7 that the stress field inside the circular inclusion is still uniform when the thickness
of the interphase layer is uniform, i.e., x, = 0.25. The uniform stress field calculated here is in agreement
with that obtained by Honein et al. (1994). It can be clearly observed from these four figures that the
nonuniformity of the stresses inside the circular inclusion is very strong when the interphase thickness is not
uniform. When the inner circle is nearly in contact with the outer circle, the nonuniformity of the stresses in
the inclusion is most apparent.
e Peak stresses

Fig. 8 presents the peak stresses opeax = max {, jo? + afv} at the interface I';, which occur at [x;, 0],

versus 4 and u, with py:u; = 2:1. We observe that the magnitude of the peak stresses will also be lowered
when the interphase layer becomes more compliant. The peak stresses are very sensitive to different values
of 4.
e Stress concentration

In the following, we consider the special case, where the circular inclusion S; is a hole. We are concerned
with the stress concentration g.,/¢3; at the point of free edge [x»,0]. Fig. 9 shows the variation of the stress
concentration versus A and p,/u;. It is noticed that when p; = p,, the stress concentration is 2, which is the
well known result for a cavity in an unbounded matrix. When g, > u, (the interphase layer is softer than
the matrix), the stress concentration will be less than 2, in addition, when I, approaches I'j, the stress
concentration will be lowered. When p; < u, (the interphase layer is stiffer than the matrix), the stress
concentration will be larger than 2, and in addition, when I, is nearly in contact with I'|, the stress con-

A x,=0.9999
v x,=0.98

0 x,=0.95

U x2=0.90

* XQ=0.8

G,/0.y

X x2=0.7
o x2=0.25

50 100 150 200 20 300 350
Angle (deg)

Fig. 4. Nonuniformity of normalized stress o,/ o2y along the circular interface I's.
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0 X2:0.95
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X X2:0.7

x=0.25

e ——————— .~
= e ——

1 1 1 | 1 1 1
u} 50 100 150 200 250 300 350

Angle (deg)

Fig. 5. Nonuniformity of normalized stress o../c2; along the circular interface I's.

T T T T T T T T T
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0 x2=0.95
By o x,=0.90 7
8a * x,=0.8
o 1r =0.7
= x X2=U.
N
x=0.25
5 ol o X2
08|
07 s
06 it
Bl 08 06 04 02 0 02 0.4 06 08 1

(2x—x _xz)/(xz - X;)

Fig. 6. Nonuniformity of normalized stress o,/ o2y along the x-axis.

centration will be enhanced considerably, e.g., the stress concentration can get a value of 6 when 4 = 0.75
and p, /iy = 3.

6.2. Eigenstrain problem

It is assumed that the uniform eigenstrains imposed on the circular inclusion satisfy the following
condition
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i x,=0.8 7
— x2=0.7 S T
064k =
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062 1 1 1 1 1 1 1 1 1
B -08 08 04 02 0 02 0.4 06 08 1
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Fig. 7. Nonuniformity of normalized stress o,/ o2y along the yj-axis.
i ' /ey =03 ‘ i i
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ga 08F
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02} ‘//—
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0 1 Il 1 1 1 1 1
0 0.1 02 03 0.4 05 06 07
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Fig. 8. Variations of peak stresses opeac /02> along the interface I's versus 4 and p,.

& = _i & =0 (46)

Fig. 10 shows the variations of stress component o, along the x-axis when the stiffness of the interphase
layer is varied with x, = 0.9999 and y,/u; = 0.5. It can be observed that the nonuniformity of stress inside
the circular inclusion is very strong when u,/p; # 0.5 due to the varying interphase thickness. When
W/ s = 0.5, the stress field inside the circular inclusion is still uniform since in this special case, the in-
terphase layer and the matrix possess the same elastic properties. The magnitude of o, will be lowered when
the interphase layer becomes more compliant, while the magnitude of ., at x = 0.5 will be elevated con-
siderably when the interphase layer becomes stiffer than both the inclusion and the matrix.
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Fig. 9. Variation of the stress concentration versus 4 and g, /p,.
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04 Hy [ 15 =0.001
02

Fig. 10. Variations of o, along the x-axis when the stiffness of the interphase layer is varied with x, = 0.9999 and g, /p; = 0.5 when
uniform eigenstrain is imposed on the circular inclusion.

6.3. Dislocation problem

In this subsection, we only consider the case of a screw dislocation with Burgers vector b on the x-axis in
the unbounded matrix. In this case, £, = 0 in view of (38). Fig. 11 shows the variation of F* = F, /271;11132
versus the dislocation location and x, with py:u,:p; = 20:1:10. This configuration represents that the in-
clusion is stiffer and the interphase layer is softer than the matrix. We find an interesting phenomenon that
when the two circles I'; and I'; are nearly in contact with each other at the point [1,0], there is an unstable
equilibrium position very near the circle I';, and somewhat unexpectedly, there exists another stable
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04K

-06H

-08H
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X

Fig. 11. Variation of F* = F,¥/27ru153 versus the dislocation location and x;, with py:p,:u, = 20:1:10.
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2=0.99995
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1 1.005 1.01 1.0158 1.02 1.025 1.03 1.035 1.04 1.045 1.0€

X

Fig. 12. Variation of F* = E/Zn,ull;f versus the dislocation location and x, with psipyip, = 1:24:2.

equilibrium position further away from the circle I'. The numerical results of Xiao and Chen (2000)
showed that the equilibrium positions are always unstable for a screw dislocation interacting with a uni-
formly coated fiber when the fiber is stiffer and the interphase layer is softer than the matrix. Fig. 12 shows
the variation of F* = F; /2nu152 versus the dislocation location and x, with u:p,:u; = 1:24:2. This con-
figuration represents that the inclusion is softer and the interphase layer is stiffer than the matrix. We can
also find an interesting phenomenon that when the two circles I'; and I', are nearly in contact with each
other at the point [1,0], there is a stable equilibrium position very near the circle I';, and somewhat un-
expectedly, there exists another unstable equilibrium position further away from the circle I';. The nu-
merical results of Xiao and Chen (2000) showed that the equilibrium positions are always stable for a screw
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Fig. 13. Variations of the SIF k*(%;) versus 4 and p, with uy:p; = 2:1 and %, = 1.05, %, = 1.35.

k*(x1)

dislocation interacting with a uniformly coated fiber when the fiber is softer and the interphase layer is stiffer
than the matrix.

6.4. A radial matrix crack

Fig. 13 illustrates the variations of the normalized SIF k*(x;) = k3(%1)/0201/0.5(X, — %) versus 4 and u,
with py:p; = 2:1 and x; = 1.05, X, = 1.35. It can be observed that the magnitude of SIF at x; will be
lowered when the nonuniformity of the compliant interphase layer increases, and that the magnitude of SIF
will be elevated when the interphase layer is more compliant. Fig. 14 shows the difference in SIF
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Fig. 14. Difference in SIF Ak* versus 4 and u, with py:p; = 2:1 and %, = 1.05, %, = 1.35.
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Ak* = (ks(%1) — k3(%2)) /025 1/0.5(%2 — %1) versus 4 and p, with p3:py = 2:1 and % = 1.05, %, = 1.35. We can
find that the difference in SIF can be positive or negative depending on the combinations of 4 and y,. It can
also be noticed that Ak* can just be equal to zero for some special combinations of 4 and .

7. Conclusions

The following conclusions, which are unique for the nonuniformly coated circular inclusion, can be
drawn from this research

e When the three-phase composite system is only subject to remote uniform shearing or uniform eigen-
strain imposed on the circular inclusion, the stress field inside the circular inclusion is intrinsically non-
uniform due to the varying interphase thickness. It is not the average stresses but the peak stresses that
can describe where the debonding and failure will occur.

e When a screw dislocation interacts with the nonuniformly coated circular inclusion, two equilibrium po-
sitions of different nature, one stable and the other one unstable, may coexist.

The analytical solution for a screw dislocation is also applied as Green’s function to study matrix
cracking in the inclusion/interphase/matrix composite system. It is observed that the varying interphase
thickness can significantly affect SIF.
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