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Abstract

An analytical solution is derived for the problem of a nonuniformly coated circular inclusion in an unbounded

matrix under anti-plane deformations. The inclusion/interphase/matrix system is subject to (1) remote uniform shear

and uniform eigenstrain imposed on the circular inclusion, and (2) a screw dislocation or a point force in the matrix. It

is found that the varying interphase thickness will exert a significant influence on the nonuniform stress field within the

circular inclusion, and on the direction and magnitude of the image force acting on a screw dislocation. In the course of

development, it is found that the presence of certain coated inclusions, which are termed stealth, will not cause change

of elastic energy in the body. The derived analytical solution for a screw dislocation is then employed as Green�s
function to investigate a radial matrix crack interacting with the nonuniformly coated inclusion. The numerical results

show that the varying interphase thickness will also affect the stress intensity factors.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interphases between the fiber and the surrounding matrix have become a focused research topic in

recent years due to the fact that the interphases, although usually small in thickness, can affect the overall

mechanical properties of the fiber-reinforced composites, and play an important role in controlling the
failure mechanism and fracture toughness of composite materials. Up to now, two different kinds of models

have been proposed and developed to simulate the interphase layer. One widely used model (see, for ex-

ample Achenbach and Zhu, 1990; Zhong and Meguid, 1997; Ru and Schiavone, 1997; Shen et al., 2000,

2001a,b; Liu et al., 2001) is based on the assumption that tractions are continuous but displacements are

discontinuous across the interface. More precisely, jumps in the displacement components are assumed to

be proportional, in terms of the �spring-factor-type� interface parameters, to their respective interface
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traction components. As pointed out by Liu et al. (2000), the main drawbacks of this spring-like model lie

in that it cannot provide other important information about the property of the composite, such as the

effect of changes of thickness and nonuniform distribution of the interphases. The other model (see, for

example Honein et al., 1994; Ru et al., 1999; Liu et al., 2000; Xiao and Chen, 2000, 2001a,b; Shodja and
Sarvestani, 2001), which is based on strict elasticity theory and which will be employed in this study, as-

sumes the interphase as a distinct layer between the fiber (inclusion) and the matrix, of specified thickness

and of elastic constants different from those of the matrix and the fiber.

The main objectives of the present paper are (1) to investigate the influence of varying interphase

thickness on the stress fields induced within and near the fiber (inclusion); (2) to probe the influence of

varying interphase thickness on the mobility of a dislocation in the matrix; and (3) to study the influence of

varying interphase thickness on matrix cracking. By applying complex variable techniques, an exact elastic

solution in series form is derived for the interaction problem between a nonuniformly coated inclusion and
a screw dislocation or a point force. The derived analytical solution for a screw dislocation is then utilized

as Green�s function to investigate matrix cracking in the inclusion/interphase/matrix system. The numerical
results show clearly how the nonuniform stress field, average stresses and peak stresses within the circular

inclusion, change of elastic energy due to the introduction of the coated inclusion, and stress concentration

vary with the nonuniformity of the interphase thickness when the composite system is only subject to re-

mote uniform shearing and uniform eigenstrain imposed on the circular inclusion. The numerical results

also convincingly demonstrate that varying interphase thickness can significantly affect the direction and

magnitude of the image force acting on a screw dislocation in the matrix, and can influence the stress
intensity factors (SIF) for a matrix crack.

2. Basic equations

As shown in Fig. 1, we consider a circular inclusion S3 surrounded by an interphase layer S2 of non-
uniform thickness, which in turn is embedded in an unbounded matrix S1. The shear moduli of S1, S2 and S3
are respectively l1, l2 and l3. Both the outer circular interface C1 formed by S1 and S2, and the inner
circular interface C2 formed by S3 and S2 are assumed to be perfect, i.e., both tractions and displacements
are continuous across the two interfaces. The origin of the Cartesian coordinate system is chosen to be at

the center of the outer circle C1 of unit radius. The center of the inner circle C2 of radius R0 ¼ ðx2 � x1Þ=2

Fig. 1. A screw dislocation or a point force near a circular inclusion with a nonuniform interphase layer (z-plane).
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lies on the x-axis. The two centers of the two circles C1 and C2 are set apart by the distance D ¼ ðx1 þ x2Þ=2.
The composite system is subject to remote uniform anti-plane shearing fr1

zx ; r
1
zy g and uniform anti-plane

eigenstrains fe	zx; e	zyg imposed on the circular inclusion S3. In addition, a line force f̂f or a screw dislocation
with Burgers vector b̂b is located at the point ẑz ¼ x̂xþ iŷy in the matrix. The nonvanishing stress components
are rzx and rzy and the only displacement component is the out-of-plane component uz. For this anti-plane
deformation state, the out-of-plane displacement uz and stress components can be expressed in terms of a
complex function f ðzÞ (z ¼ xþ iy) as follows (Muskhelishvili, 1953; Gong and Meguid, 1992)

uz ¼ Imff ðzÞg
rzy þ irzx ¼ lf 0ðzÞ

ð1Þ

The complex potentials defined in the regions S1, S2 and S3 will be denoted by f1ðzÞ, f2ðzÞ and f3ðzÞ.

3. Conformal mapping

We adopt the following conformal mapping function mðfÞ (Cao, 1988)

z ¼ mðfÞ ¼ f � a
af � 1 ð2Þ

where

a ¼ 1þ x1x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 � 1Þðx22 � 1Þ

p
x1 þ x2

> 1 ð3Þ

The mapped f-plane is shown in Fig. 2. It can be observed that the unbounded matrix S1 is mapped onto a
unit disk jfj < 1 in the f-plane and the point at infinity z ¼ 1 is mapped onto f ¼ 1=a in the f-plane, the
interphase layer S2 formed by two eccentric circles C1 and C2 is mapped onto the annulus 1 < jfj < R
ðR ¼ ð1� x1x2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 � 1Þðx22 � 1Þ

p
Þ=ðx2 � x1Þ > 1Þ in the f-plane, and the circular inclusion S3 is mapped

onto jfj > R in the f-plane. It�s easier to solve the boundary value problem in the f-plane than in the
original z-plane.

Fig. 2. The problem in the f-plane.
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4. Exact solution

4.1. Field potentials

It shall be mentioned here that for convenience, we write

fiðzÞ ¼ fiðmðfÞÞ ¼ fiðfÞ ði ¼ 1; 2; 3Þ

The continuity condition of displacement across the interface jrj ¼ 1 can be expressed as

½f1ðrÞ þ f 2ð1=rÞ

þ ¼ ½f 1ð1=rÞ þ f2ðrÞ
� ðjrj ¼ 1Þ ð4Þ

where the superscripts ‘‘þ’’ and ‘‘�’’ denote the limit values from the inner and outer sides of the contour
being considered.

In view of the above expression, we introduce a function D1ðfÞ defined by

D1ðfÞ ¼ f1ðfÞ þ f 2ð1=fÞ 1=R < jfj < 1
f 1ð1=fÞ þ f2ðfÞ 1 < jfj < R

�
ð5Þ

By the generalized Liouville�s theorem, we can obtain

D1ðfÞ ¼
K

f � 1=a�
a2K
f � a

þ q ln
f � f̂f

f � 1=aþ �qq ln
f � 1=f̂f
f � a

þ
Xþ1

n¼1
ðAnf

n þ Anf
�nÞ ð1=R < jfj < RÞ ð6Þ

where

K ¼ a�2 � 1
l1

ðr1
zy þ ir1

zx Þ; q ¼ b̂b� il�1
1 f̂f

2p
; f̂f ¼ ẑz� a

aẑz� 1 ð7Þ

The continuity condition of traction across the interface jrj ¼ 1 can be expressed as

l1½f þ
1 ðrÞ þ f

�
1 ð1=rÞ
 ¼ l2½f �

2 ðrÞ þ f
þ
2 ð1=rÞ
 ðjrj ¼ 1Þ ð8Þ

Inserting Eq. (6) into Eq. (8) and eliminating f �
2 ðrÞ, f

þ
2 ð1=rÞ will yield

f þ
1 ðrÞ þ f

�
1 ð1=rÞ ¼ g1D1ðrÞ ðjrj ¼ 1Þ ð9Þ

where

g1 ¼
2l2

l1 þ l2
ð10Þ

In view of Eq. (9), we introduce an auxiliary function X1ðfÞ defined by

X1ðfÞ ¼
f1ðfÞ þ ð1� g1Þ � a2K

f � a
þ �qq ln

f � 1=f̂f
f � a

" #
� g1

Pþ1

n¼1
Anf

n � q ln
f � f̂f

f � 1=a�
K

f � 1=a ðjfj < 1Þ

�f 1ð1=fÞ � ð1� g1Þ
K

f � 1=aþ q ln
f � f̂f

f � 1=a

" #
þ g1

Pþ1

n¼1
Anf

�n þ �qq ln
f � 1=f̂f
f � a

� a2K
f � a

ðjfj > 1Þ

8>>>><
>>>>:

ð11Þ
It follows from Eqs. (9) and (11) that X1ðfÞ is analytic and single-valued in the whole complex f-plane
including the point at infinity. By Liouville�s theorem, we obtain

X1ðfÞ � 0 ð12Þ
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then

f1ðfÞ ¼ ð1� g1Þ
a2K
f � a

"
� �qq ln

f � 1=f̂f
f � a

#
þ g1

Xþ1

n¼1
Anf

n þ q ln
f � f̂f

f � 1=aþ
K

f � 1=a ðjfj < 1Þ

f 1ð1=fÞ ¼ ð1� g1Þ
"
� K

f � 1=a� q ln
f � f̂f

f � 1=a

#
þ g1

Xþ1

n¼1
Anf

�n þ �qq ln
f � 1=f̂f
f � a

� a2K
f � a

ðjfj > 1Þ

ð13Þ

Substituting Eq. (13)2 into Eq. (5) will lead to the following expression for f2ðfÞ

f2ðfÞ ¼ ð2� g1Þ
K

f � 1=a

"
þ q ln

f � f̂f
f � 1=a

#
þ
Xþ1

n¼1
Anf

n�
þ ð1� g1ÞAnf

�n
 ð1 < jfj < RÞ ð14Þ

The continuity condition of displacement across the interface jsj ¼ R can be expressed as

f2ðsÞ
"

þ f 3ðR2=sÞ �
2ðaRÞ2x
s � aR2

#þ
¼ f 2ðR2=sÞ
�

þ f3ðsÞ þ
2x

s � 1=a

��
ðjsj ¼ RÞ ð15Þ

where

x ¼ ða�2 � 1Þðe	zy þ ie	zxÞ ð16Þ

In view of the above expression, we introduce a function D2ðfÞ defined by

D2ðfÞ ¼
f2ðfÞ þ f 3ðR2=fÞ �

2ðaRÞ2x
f � aR2

ð1 < jfj < RÞ

f 2ðR2=fÞ þ f3ðfÞ þ
2x

f � 1=a ðR < jfj < R2Þ

8>><
>>: ð17Þ

By the generalized Liouville�s theorem, we can obtain

D2ðfÞ ¼
Xþ1

n¼1
ðBnf

n þ BnR2nf
�nÞ ð1 < jfj < R2Þ ð18Þ

The continuity condition of traction across the interface jsj ¼ R can be expressed as

l2½f þ
2 ðsÞ þ f

�
2 ðR2=sÞ
 ¼ l3½f �

3 ðsÞ þ f
þ
3 ðR2=sÞ
 ðjsj ¼ RÞ ð19Þ

Inserting Eq. (17) into Eq. (19) and eliminating f þ
2 ðsÞ, f

�
2 ðR2=sÞ will yield

f þ
3 ðsÞ þ f

�
3 ðR2=sÞ ¼ g2 D2ðsÞ

"
þ ðaRÞ2x

s � aR2
� x

s � 1=a

#
ðjsj ¼ RÞ ð20Þ

where

g2 ¼
2l2

l2 þ l3
ð21Þ

In view of Eq. (20), we introduce a function X2ðfÞ defined by

X2ðfÞ ¼
f3ðfÞ � g2

Pþ1

n¼1
BnR2nf

�n � x
f � 1=a

" #
ðjfj > RÞ

�f 3ðR2=fÞ þ g2
Pþ1

n¼1
Bnf

n þ ðaRÞ2x
f � aR2

" #
ðjfj < RÞ

8>>>><
>>>>:

ð22Þ
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It can be easily deduced from Eqs. (20) and (22) that

X2ðfÞ � 0 ð23Þ

then

f3ðfÞ ¼ g2
Xþ1

n¼1
BnR2nf

�n

"
� x

f � 1=a

#
ðjfj > RÞ

f 3ðR2=fÞ ¼ g2
Xþ1

n¼1
Bnf

n

"
þ ðaRÞ2x

f � aR2

#
ðjfj < RÞ

ð24Þ

Substituting Eq. (24)2 into Eq. (17) will yield

f2ðfÞ ¼
Xþ1

n¼1
ð1
"

� g2ÞBnf
n þ BnR2nf

�n þ ð2� g2Þ
ðaRÞ2x
f � aR2

#
ð1 < jfj < RÞ ð25Þ

In order to simultaneously satisfy the boundary conditions at C1 and C2, the compatibility condition for
f2ðfÞ shall be satisfied. The compatibility condition for f2ðfÞ will lead to the following two compatibility
identities

Xþ1

n¼1
ð1
�

� g1ÞAn � BnR2n


f�n ¼ ðg1 � 2Þ

K
f � 1=a

"
þ q ln

f � f̂f
f � 1=a

#

Xþ1

n¼1
An½ � ð1� g2ÞBn
fn ¼ ð2� g2Þ

ðaRÞ2x
f � aR2

ð1 < jfj < RÞ

ð26Þ

Expanding all of the terms in the above expression and equating the coefficients of the same power of f will
lead to the following set of algebraic equations

ð1� g1ÞAn � BnR2n ¼ ðg1 � 2Þ Ka1�n

"
� �qq

f̂fn � a�n

n

 !#

An ¼ ð1� g2ÞBn þ ðg2 � 2ÞaðaR2Þ
�nx

for n ¼ 1; 2; . . . ;þ1 ð27Þ

Then all of the unknowns can be uniquely determined to be

An ¼
1

ð1� g1Þð1� g2Þ � R2n
ð1� g2Þðg1 � 2Þ Ka1�n � �qq

f̂fn � a�n

n

 !" #
þ ð2� g2Þa1�nx

( )

Bn ¼
1

ð1� g1Þð1� g2Þ � R2n
ðg1 � 2Þ Ka1�n � �qq

f̂fn � a�n

n

 !" #
þ ð2� g2Þð1� g1Þa1�nR�2nx

( )
8>>>>><
>>>>>:
for n ¼ 1; 2; . . . ;þ1 ð28Þ
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Now, all of the holomorphic functions have been fully obtained as follows

f1ðfÞ ¼ ð1� g1Þ
a2K
f � a

"
� �qq ln

f � 1=f̂f
f � a

#
þ g1

Xþ1

n¼1
Anf

n þ q ln
f � f̂f

f � 1=aþ
K

f � 1=a ðjfj < 1Þ

f2ðfÞ ¼ ð2� g1Þ
K

f � 1=a

"
þ q ln

f � f̂f
f � 1=a

#
þ
Xþ1

n¼1
Anf

n�
þ ð1� g1ÞAnf

�n


¼
Xþ1

n¼1
ð1
"

� g2ÞBnf
n þ BnR2nf

�n þ ð2� g2Þ
ðaRÞ2x
f � aR2

#
ð1 < jfj < RÞ

f3ðfÞ ¼ g2
Xþ1

n¼1
BnR2nf

�n

"
� x

f � 1=a

#
ðjfj > RÞ

ð29Þ

4.2. Stress field

• In the unbounded matrix S1

rzy þ irzx ¼ r1
zy þ ir1

zx þ
l1qðaf̂f � 1Þðaf � 1Þ

ðf � f̂fÞ
þ l1

ðaf � 1Þ2

a2 � 1

� ðg1

(
� 1Þ a2K

ðf � aÞ2

"
þ �qqð1� af̂fÞ
ðf̂ff � 1Þðf � aÞ

#
þ g1

Xþ1

n¼1
nAnf

n�1

)
ðjfj < 1Þ ð30Þ

• In the intermediate interphase layer S2

rzy þ irzx ¼ l2
ðaf � 1Þ2

a2 � 1 � ð2
(

� g1Þ
"
� K

ðf � 1=aÞ2
þ qðaf̂f � 1Þ
ðf � f̂fÞðaf � 1Þ

#

þ
Xþ1

n¼1
nAnf

n�1�
þ ðg1 � 1ÞnAnf

�n�1
) ð1 < jfj < RÞ ð31Þ

• In the circular inclusion S3

rzy þ irzx ¼ �l3g2ðe	zy þ ie	zxÞ þ l3g2
ðaf � 1Þ2

a2 � 1
Xþ1

n¼1
ð

"
� nÞBnR2nf

�n�1

#
ðjfj > RÞ ð32Þ

It can be observed from (32) that when the system is only subject to remote uniform loading or uniform

eigenstrain, the stress field inside the circular inclusion is no longer uniform due to the nonuniform thickness

of the interphase layer. The average stresses inside the circular inclusion also give important information

regarding the overall understanding and behavior of the composite material. The average stresses within the

inner circular inclusion can be calculated to be

�rrzy þ i�rrzx ¼ �l3g2ðe	zy þ ie	zxÞ � l3g2
ða2R2 � 1Þ2

R2ða2 � 1Þ
Xþ1

n¼1
na�n�1Bn ð33Þ

where the bar ‘‘�’’ denotes the average value.
Following the approach of Gong and Meguid (1992), the change of elastic energy DW in the body due to

the introduction of the coated circular inclusion can be evaluated for the case of uniform shearing r1
zy and

r1
zx as

DW ¼ p
l1

ðr1
zy Þ

2
h

þ ðr1
zx Þ

2
i

ð1
"

� g1Þ þ g1ð1� g2Þð2� g1Þ
Xþ1

n¼1

nð1� a2Þ2a�2ðnþ1Þ
ð1� g1Þð1� g2Þ � R2n

#
ð34Þ
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When l2 ¼ l3, i.e., g2 ¼ 1, then we have

DW ¼ pð1� g1Þ
l1

ðr1
zy Þ

2
h

þ ðr1
zx Þ

2
i

ð35Þ

which coincides with the results of Gong and Meguid (1992).

Here we will term those coated inclusions, which satisfy DW ¼ 0, stealth. This definition for stealth
inclusion can be considered as a natural extension for a uniformly coated inclusion (Honein et al., 1994). As

a result, the nonuniformly coated inclusion will be stealth when

ð1� g1Þ þ g1ð1� g2Þð2� g1Þ
Xþ1

n¼1

nð1� a2Þ2a�2ðnþ1Þ
ð1� g1Þð1� g2Þ � R2n

¼ 0 ð36Þ

When the interphase thickness is uniform, i.e., a ! þ1 and R0 ¼ 1=R, then
1� g1 ¼ R20ð1� g2Þ ð37Þ

The above condition is identical to that given by Honein et al. (1994).

4.3. Image force on the dislocation

Substituting the stress field acting on the screw dislocation (Eq. (30) subtracting the stress due to the
dislocation itself) into the Peach–Koehler formula (Wang and Lee, 1999), we can obtain the image force on

the screw dislocation. In the absence of external loading and uniform eigenstrain, i.e., K ¼ 0, x ¼ 0, the
image force on the screw dislocation can be explicitly expressed as

Fx � iFy ¼ l12pq
ðaf̂f � 1Þ2

a2 � 1 ðg1

"
� 1Þ �qqð1� af̂fÞ

ðjf̂fj2 � 1Þðf̂f � aÞ
þ g1

Xþ1

n¼1
nAnf̂f

n�1

#
ðjf̂fj < 1Þ ð38Þ

5. A radial crack in the matrix

We now assume that a crack ½x̂x1; x̂x2
 lies on the x-axis in the matrix as shown in Fig. 3, and we do not
consider the uniform eigenstrains imposed on the circular inclusion. Applying the analytical solution for a
screw dislocation which has been derived in the previous section, we finally obtain the following standard

singular integral equations for the unknown dislocation densities BðtÞ

Fig. 3. A radial crack in the matrix interacting with the nonuniformly coated circular inclusion.
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Z t2

t1

BðtÞ
t � n

dt þ
Z t2

t1

1� g1
n � 1=t

"
� g1ðg1 � 2Þðg2 � 1Þ

Xþ1

n¼1

tnnn�1

ð1� g1Þð1� g2Þ � R2n

#
BðtÞdt

¼
2pr1

zy

l1

ða2 � 1Þ
a2

1

ðn � 1=aÞ2

"
þ a2ð1� g1Þ

ðn � aÞ2
þ g1ðg1 � 2Þðg2 � 1Þ

Xþ1

n¼1

na1�nnn�1

ð1� g1Þð1� g2Þ � R2n

#

ðt1 < n < t2Þ ð39Þ

and the uniqueness conditionZ t2

t1

BðtÞdt ¼ 0 ð40Þ

where

t1 ¼ mðx̂x1Þ; t2 ¼ mðx̂x2Þ ð41Þ

It shall be noticed that the above singular integral equations are formulated in the f-plane in stead of in the
original z-plane. Assuming square root singularities at both ends of the crack, the unknown dislocation
density may be expressed as

BðtÞ ¼ GðtÞ
ðt � t1Þ0:5ðt2 � tÞ0:5

ð42Þ

Following the simple numerical method developed by Erdogan and Gupta (1972), the discretized forms of

Eqs. (39) and (40) can be obtained. Consequently, we can obtain the numerical solution of the dislocation

density function GðtÞ by solving the resulting linear algebraic equations. The stress component rzy behaves
singularly at the two crack tips as follows

rzy ¼
Kðx̂x1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx̂x1 � xÞ

p ; rzy ¼
Kðx̂x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� x̂x2Þ

p ð43Þ

where

Kðx̂x1Þ ¼
�l1Gðt1Þjat1 � 1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða2 � 1Þ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � t1
p ð44aÞ

Kðx̂x2Þ ¼
l1Gðt2Þjat2 � 1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ða2 � 1Þ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � t1
p ð44bÞ

The SIFs are defined as (Erdogan et al., 1991)

k3ðx̂x1Þ ¼ lim
x!x̂x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx̂x1 � xÞ

p
rzyðx; 0Þ ¼ Kðx̂x1Þ

k3ðx̂x2Þ ¼ lim
x!x̂x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� x̂x2Þ

p
rzyðx; 0Þ ¼ Kðx̂x2Þ

ð45Þ

6. Numerical examples and discussions

In all of the numerical results presented below, if unspecified, it is assumed that the radius of the circular
inclusion S3 is fixed to be 0.25, i.e., R0 ¼ 0:25.
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6.1. The case of remote uniform shearing

In this subsection, we only consider the case in which the unbounded matrix is only subject to remote

uniform shearing r1
zy .

• Nonuniform stresses within the circular inclusion S3
Figs. 4–7 illustrate the stress distribution in the circular inclusion along the circle C2 and along the x-axis

and y1-axis (see Fig. 1) when the center of the circular inclusion S3 is varied with l3:l2:l1 ¼ 10:1:5. It can be
observed from Figs. 4–7 that the stress field inside the circular inclusion is still uniform when the thickness

of the interphase layer is uniform, i.e., x2 ¼ 0:25. The uniform stress field calculated here is in agreement
with that obtained by Honein et al. (1994). It can be clearly observed from these four figures that the

nonuniformity of the stresses inside the circular inclusion is very strong when the interphase thickness is not
uniform. When the inner circle is nearly in contact with the outer circle, the nonuniformity of the stresses in

the inclusion is most apparent.

• Peak stresses

Fig. 8 presents the peak stresses rpeak ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2zx þ r2zy

qn o
at the interface C2, which occur at ½x2; 0
,

versus D and l2 with l3:l1 ¼ 2:1. We observe that the magnitude of the peak stresses will also be lowered
when the interphase layer becomes more compliant. The peak stresses are very sensitive to different values

of D.
• Stress concentration

In the following, we consider the special case, where the circular inclusion S3 is a hole. We are concerned
with the stress concentration rzy=r1

zy at the point of free edge ½x2; 0
. Fig. 9 shows the variation of the stress
concentration versus D and l2=l1. It is noticed that when l1 ¼ l2, the stress concentration is 2, which is the
well known result for a cavity in an unbounded matrix. When l1 > l2 (the interphase layer is softer than
the matrix), the stress concentration will be less than 2, in addition, when C2 approaches C1, the stress
concentration will be lowered. When l1 < l2 (the interphase layer is stiffer than the matrix), the stress
concentration will be larger than 2, and in addition, when C2 is nearly in contact with C1, the stress con-

Fig. 4. Nonuniformity of normalized stress rzy=r1
zy along the circular interface C2.

890 X. Wang, Z. Zhong / International Journal of Solids and Structures 40 (2003) 881–897



centration will be enhanced considerably, e.g., the stress concentration can get a value of 6 when D ¼ 0:75
and l2=l1 ¼ 3.

6.2. Eigenstrain problem

It is assumed that the uniform eigenstrains imposed on the circular inclusion satisfy the following

condition

Fig. 5. Nonuniformity of normalized stress rzx=r1
zy along the circular interface C2.

Fig. 6. Nonuniformity of normalized stress rzy=r1
zy along the x-axis.
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e	zx ¼ � 1
l3

; e	zy ¼ 0 ð46Þ

Fig. 10 shows the variations of stress component rzx along the x-axis when the stiffness of the interphase
layer is varied with x2 ¼ 0:9999 and l1=l3 ¼ 0:5. It can be observed that the nonuniformity of stress inside
the circular inclusion is very strong when l2=l3 6¼ 0:5 due to the varying interphase thickness. When
l2=l3 ¼ 0:5, the stress field inside the circular inclusion is still uniform since in this special case, the in-
terphase layer and the matrix possess the same elastic properties. The magnitude of rzx will be lowered when

the interphase layer becomes more compliant, while the magnitude of rzx at x ¼ 0:5 will be elevated con-
siderably when the interphase layer becomes stiffer than both the inclusion and the matrix.

Fig. 7. Nonuniformity of normalized stress rzy=r1
zy along the y1-axis.

Fig. 8. Variations of peak stresses rpeak=r1
zy along the interface C2 versus D and l2.
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6.3. Dislocation problem

In this subsection, we only consider the case of a screw dislocation with Burgers vector b̂b on the x-axis in
the unbounded matrix. In this case, Fy ¼ 0 in view of (38). Fig. 11 shows the variation of F 	 ¼ Fx=2pl1b̂b

2

versus the dislocation location and x2 with l3:l2:l1 ¼ 20:1:10. This configuration represents that the in-
clusion is stiffer and the interphase layer is softer than the matrix. We find an interesting phenomenon that

when the two circles C1 and C2 are nearly in contact with each other at the point [1,0], there is an unstable

equilibrium position very near the circle C1, and somewhat unexpectedly, there exists another stable

Fig. 9. Variation of the stress concentration versus D and l2=l1.

Fig. 10. Variations of rzx along the x-axis when the stiffness of the interphase layer is varied with x2 ¼ 0:9999 and l1=l3 ¼ 0:5 when
uniform eigenstrain is imposed on the circular inclusion.
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equilibrium position further away from the circle C1. The numerical results of Xiao and Chen (2000)
showed that the equilibrium positions are always unstable for a screw dislocation interacting with a uni-

formly coated fiber when the fiber is stiffer and the interphase layer is softer than the matrix. Fig. 12 shows

the variation of F 	 ¼ Fx=2pl1b̂b
2 versus the dislocation location and x2 with l3:l2:l1 ¼ 1:24:2. This con-

figuration represents that the inclusion is softer and the interphase layer is stiffer than the matrix. We can

also find an interesting phenomenon that when the two circles C1 and C2 are nearly in contact with each
other at the point [1,0], there is a stable equilibrium position very near the circle C1, and somewhat un-
expectedly, there exists another unstable equilibrium position further away from the circle C1. The nu-
merical results of Xiao and Chen (2000) showed that the equilibrium positions are always stable for a screw

Fig. 11. Variation of F 	 ¼ Fx=2pl1b̂b
2
z versus the dislocation location and x2 with l3:l2:l1 ¼ 20:1:10.

Fig. 12. Variation of F 	 ¼ Fx=2pl1b̂b
2
z versus the dislocation location and x2 with l3:l2:l1 ¼ 1:24:2.
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dislocation interacting with a uniformly coated fiber when the fiber is softer and the interphase layer is stiffer

than the matrix.

6.4. A radial matrix crack

Fig. 13 illustrates the variations of the normalized SIF k	ðx̂x1Þ ¼ k3ðx̂x1Þ=r1
zy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðx̂x2 � x̂x1Þ

p
versus D and l2

with l3:l1 ¼ 2:1 and x̂x1 ¼ 1:05, x̂x2 ¼ 1:35. It can be observed that the magnitude of SIF at x̂x1 will be
lowered when the nonuniformity of the compliant interphase layer increases, and that the magnitude of SIF

will be elevated when the interphase layer is more compliant. Fig. 14 shows the difference in SIF

Fig. 13. Variations of the SIF k	ðx̂x1Þ versus D and l2 with l3:l1 ¼ 2:1 and x̂x1 ¼ 1:05, x̂x2 ¼ 1:35.

Fig. 14. Difference in SIF Dk	 versus D and l2 with l3:l1 ¼ 2:1 and x̂x1 ¼ 1:05, x̂x2 ¼ 1:35.
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Dk	 ¼ ðk3ðx̂x1Þ � k3ðx̂x2ÞÞ=r1
zy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðx̂x2 � x̂x1Þ

p
versus D and l2 with l3:l1 ¼ 2:1 and x̂x1 ¼ 1:05, x̂x2 ¼ 1:35. We can

find that the difference in SIF can be positive or negative depending on the combinations of D and l2. It can
also be noticed that Dk	 can just be equal to zero for some special combinations of D and l2.

7. Conclusions

The following conclusions, which are unique for the nonuniformly coated circular inclusion, can be

drawn from this research

• When the three-phase composite system is only subject to remote uniform shearing or uniform eigen-

strain imposed on the circular inclusion, the stress field inside the circular inclusion is intrinsically non-
uniform due to the varying interphase thickness. It is not the average stresses but the peak stresses that

can describe where the debonding and failure will occur.

• When a screw dislocation interacts with the nonuniformly coated circular inclusion, two equilibrium po-

sitions of different nature, one stable and the other one unstable, may coexist.

The analytical solution for a screw dislocation is also applied as Green�s function to study matrix
cracking in the inclusion/interphase/matrix composite system. It is observed that the varying interphase

thickness can significantly affect SIF.
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